745 research outputs found

    The use of human adipose-derived stem cells in the treatment of physiological and pathological vulvar dystrophies

    Get PDF
    “Vulvar dystrophy” is characterized by chronic alterations of vulvar trophism, occurring in both physiological (menopause) and pathological (lichen sclerosus, vulvar graft-versus-host disease) conditions. Associated symptoms are itching, burning, dyspareunia and vaginal dryness. Current treatments often do not imply a complete remission of symptoms. Adipose-Derived Stem Cells (ADSCs) injection represents a valid alternative therapy to enhance trophism and tone of dystrophic tissues. We evaluated efficacy of ADSCs-based therapy in the dystrophic areas. From February to April 2013 we enrolled 8 patients with vulvar dystrophy. A biopsy specimen was performed before and after treatment. Digital photographs were taken at baseline and during the follow-up. Pain was detected with Visual Analogue Scale and sexual function was evaluated with Female Sexual Function Index. All patients received 2 treatments in 3 months. Follow-up was at 1 week , 1 and 3 months, and 1 and 2 years. We obtained a significant vulvar trophism enhancement in all patients, who reported pain reduction and sexual function improvement. Objective exam with speculum was easy to perform after treatment. We believe ADSCs-based therapy finds its application in the treatment of vulvar dystrophies, since ADSCs could induce increased vascularization due to their angiogenic properties and tissue trophism improvement thanks to their eutrophic effect

    A participatory design approach for the development of support environments in eGovernment services to citizens

    Get PDF
    The introduction of eGovernment services and applications leads to major changes in the structure and operation of public administrations. In this paper we describe the work in progress in an Italian project called “SPO.T.” aimed at the analysis, development, deployment and evaluation of tools and environments to support the people who plan, deliver, use and evaluate user-centred provision of One-Stop-Shop services to citizens. The “SPO.T.” project has focused on two requirements: 1. the support tools and environments must facilitate the active involvement of all stakeholders in the definition and evolution of eGovernment applications and services, and it is argued that through participatory design changes of structure, process and culture can be delivered effectively; 2. they must embody a set of architecturally coherent resources which reflect the new roles and relationships of public administration and which are sufficiently generic to be relevant to a wide range of local contexts across the community

    Improvement of mouth functional disability in systemic sclerosis patients over one year in a trial of fat transplantation versus adipose-derived stromal cells

    Get PDF
    Background. Systemic sclerosis (SSc) is a multisystem disease characterized by cutaneous and visceral fibrosis. Face and mouth changes include telangiectasia, sicca syndrome, and thinning and reduction of mouth width (microcheilia) and opening (microstomia). We applied autologous fat transplantation compared with autologous adipose-derived stromal cells (ADSCs) injection to evaluate the clinical improvement of mouth opening. Methods. From February to May 2013 ten consecutive SSc patients were enrolled from the outpatient clinic of Plastic Surgery Department of Sapienza University of Rome. Patients were divided into two groups as follows: 5 patients were treated with fat transplantation and 5 patients received infiltration of ADSCs produced by cell factory of our institution. To value mouth opening, we use the Italian version of Mouth Handicap in Systemic Sclerosis Scale (IvMHISS). Mouth opening was assessed in centimetres (Maximal Mouth Opening, MMO). In order to evaluate compliance and physician and patient satisfaction, we employed a Questionnaire of Satisfaction and the Visual Analogic Scale (VAS) performed before starting study and 1 year after the last treatment. Results and Conclusion. We noticed that both procedures obtained significant results but neither one emerged as a first-choice technique. The present clinical experimentation should be regarded as a starting point for further experimental research and clinical trials

    Microstructure and Residual Stress Evolution of Laser Powder Bed Fused Inconel 718 under Heat Treatments

    Get PDF
    AbstractThe current work aimed to study the influence of various heat treatments on the microstructure, hardness, and residual stresses of Inconel 718 processed by laser powder bed fusion process. The reduction in residual stresses is crucial to avoid the deformation of the component during its removal from the building platform. Among the different heat treatments, 800 °C kept almost unaltered the original microstructure, reducing the residual stresses. Heat treatments at 900, 980, and 1065 °C gradually triggered the melt pool and dendritic structures dissolution, drastically reducing the residual stresses. Heat treatments at 900 and 980 °C involved the formation of δ phases, whereas 1065 °C generated carbides. These heat treatments were also performed on components with narrow internal channels revealing that heat treatments up to 900 °C did not trigger sintering mechanisms allowing to remove the powder from the inner channels

    Application of Directed Energy Deposition-Based Additive Manufacturing in Repair

    Get PDF
    In the circular economy, products, components, and materials are aimed to be kept at the utility and value all the lifetime. For this purpose, repair and remanufacturing are highly considered as proper techniques to return the value of the product during its life. Directed Energy Deposition (DED) is a very flexible type of additive manufacturing (AM), and among the AM techniques, it is most suitable for repairing and remanufacturing automotive and aerospace components. Its application allows damaged component to be repaired, and material lost in service to be replaced to restore the part to its original shape. In the past, tungsten inert gas welding was used as the main repair method. However, its heat affected zone is larger, and the quality is inferior. In comparison with the conventional welding processes, repair via DED has more advantages, including lower heat input, warpage and distortion, higher cooling rate, lower dilution rate, excellent metallurgical bonding between the deposited layers, high precision, and suitability for full automation. Hence, the proposed repairing method based on DED appears to be a capable method of repairing. Therefore, the focus of this study was to present an overview of the DED process and its role in the repairing of metallic components. The outcomes of this study confirm the significant capability of DED process as a repair and remanufacturing technolog

    Hardness Evolution of Solution-Annealed LPBFed Inconel 625 Alloy under Prolonged Thermal Exposure

    Get PDF
    Thanks to its high weldability, Inconel 625 (IN625) can be easily processed by laser powder bed fusion (LPBF). After production, this alloy is typically subjected to specific heat treatments to design specific microstructure features and mechanical performance suitable for various industrial applications, including aeronautical, aerospace, petrochemical, and nuclear fields. When employed in structural applications, IN625 can be used up to around 650 °C. This limitation is mainly caused by the transformation of metastable γ″ phases into stable δ phases occurring under prolonged thermal exposure, which results in drastically reduced ductility and toughness of the alloy. Because the microstructure and mechanical properties change during thermal exposure, it is essential to study the material simulating possible service temperatures. In the current study, LPBFed IN625 samples were solution-annealed and then subjected to thermal exposure at 650 °C for different times up to 2000 h. The characterization focused on the evolution of the main phases, γ″ and δ phases, and their influence on the hardness evolution. The microstructure and hardness of the heat-treated LPBFed IN625 samples were compared with data related to the traditionally processed IN625 alloy (e.g., wrought state) reported in the literature

    Development and Characterisation of Aluminium Matrix Nanocomposites AlSi10Mg/MgAl2O4 by Laser Powder Bed Fusion

    Get PDF
    Recently, additive manufacturing techniques have been gaining attention for the fabrication of parts from aluminium alloys to composites. In this work, the processing of an AlSi10Mg based composite reinforced with 0.5% in weight of MgAl2O4 nanoparticles through laser powder bed fusion (LPBF) process is presented. After an initial investigation about the effect of process parameters on the densification levels, the LPBF materials were analysed in terms of microstructure, thermo-mechanical and mechanical properties. The presence of MgAl2O4 nanoparticles involves an increment of the volumetric energy density delivered to the materials, in order to fabricate samples with high densification levels similar to the AlSi10Mg samples. However, the application of different building parameters results in modifying the size of the cellular structures influencing the mechanical properties and therefore, limiting the strengthening effect of the reinforcement

    Study of the Microstructure and Cracking Mechanisms of Hastelloy X Produced by Laser Powder Bed Fusion

    Get PDF
    Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions typically less than 1 µm, coupled with the formation of sub-micrometric carbides, the largest ones were mainly distributed along the interdendritic regions and grain boundaries. From the microstructural analyses, it appeared that the formation of intergranular carbides provided weaker zones, which combined with high thermal residual stresses resulted in hot cracks formation along the grain boundaries. The carbides were extracted from the austenitic matrix and characterized by combining different techniques, showing the formation of various types of Mo-rich carbides, classified as M6C, M12C and MnCm type. The first two types of carbides are typically found in HX alloy, whereas the last one is a metastable carbide probably generated by the very high cooling rates of the process
    • …
    corecore